Виконав:
учень 9А класу
середньої школи № 135
Матвєєв Євген.
Керівник проекту:
Про черетіна Т.В.
Казань 2004
7 клас.
Глава I.
Точки, прямі, відрізки.
Через будь-які дві точки Якщо дві прямі мають спільну
можна провести пряму, точку, то вони перетинаються.
і притому тільки одну.
Пряма а й точки А і В.
Пряма а і b перетинаються в точці О.
Дві прямі або мають тільки одну спільну точку,
або не мають спільних точок.
Кут.
Кут - Це геометрична фігура, Кут називається розгорнутим, яка складається з точки і двох променів, якщо обидві його сторони
вихідних з цієї точки. лежать на одній прямій.
Кут з вершиною О і сторонами h і k. Розгорнутий кут з вершиною З
і сторонами p і q.
Розгорнутий кут = 180є; Нерозгорнуті кут <180є.
Луч, витікаючий з вершини кута і Два кута, у яких одна загальна
ділив його на два рівних кута, сторона загальна, а дві інші
називається бісектриса кута. є продовженнями одна
інший, називаються суміжними.
Два кута, називаються вертикальними,
якщо сторони одного кута є Сума суміжних кутів = 180є.
продовженнями сторін іншого.
Дві пересічні прямі
Вертикальні кути рівні. називаються перпендикулярними,
якщо вони утворюють 4 прямих кута.
Глава I I.
Трикутники.
Трикутник - Геометрична фігура, Р АВС = АВ + ВС + СА.
кот-ая складається з 3 точок, не лежачи-
щих на 1 прямий, з'єднаних відрізками.
У рівних трикутниках проти
Трикутник з вершинами А, В, С і відповідно рівних сторін
Сторонами а, b, c. лежать рівні кути, також проти
відповідно рівних рівних
кутів лежать рівні боку.
Теорема: Якщо 2 сторони і кут Теорема: З точки, не лежачи-
між ними 1-го трикутника щей на прямій, можна провести
відповідно дорівнюють 2 сторонам перпендикуляр до цієї, і притому
і куту між ними іншого тільки один.
трикутника, то трикутники дорівнюють.
Відрізок, з'єднує вершину трикут- Відрізок бісс-си кута трикут-ка,
ка з серединою протилежній сто-сполучає вершину трикут-ка
рони, називається медіаною трикут-ка. з точкою протилежній сторо- ни, називається бісс-сой трикут-ка.
Перпендикуляр, проведений з верші-
ни трикут-ка до прямої, містить Трикут-до, у кот-го 2 сторони рівні,
протилежну сторону, називаючи- називається рівнобедреним.
ється висотою трикут-ка.
Теорема: У рівнобедреному трикут-ке
ВН - Висота трикут-ка АВС. кути при підставі дорівнюють.
Теорема: У рівнобедреному Висота рівнобедреного трикут-ка, про-
трикут-ке бісс-са, проведена веденная до основи, є медіаною
до основа-нію, є і бісс-сой.
медіаною і висотою.
Медіана, проведена до основи, є-
ється висотою і бісс-сой.
Теорема: Якщо сторона і 2 Теорема: Якщо три сторони 1го
прилеглих до неї кута 1го трикут-ка відповідно дорівнюють 3ем
трикут-ка відповідно рав-сторонам іншого трикут-ка, то такі
ни стороні і 2 прилежащим до трикут-ки дорівнюють.
ній кутам іншого трикут-ка, то
такі трикут-ки рівні.
Визначення: Окружність називається геометр-ая фігура, перебуваючи-щая з усіх точок, розташ-их на заданому расс-нии від даної точки.
Глава I I I.
Паралельні прямі.
Визначення: Дві прямі Теорема: Якщо при перетині 2 пря-
на площині паралельні, екпортувати січною навхрест лежачі кути рав-
якщо вони не перетинаються. ни, то прямі паралельні.
Теорема: Якщо при перетині 2 пря-
навхрест лежачі - 3 і 5, 4 і 6. екпортувати січної відповідні кути рав-
Односторонні - 4 і 5, 3 і 6. ни, то прямі паралельні.
Відповідні - 1 і 5, 4 і 8,2 і 6, 3 і 7.
Теорема: Якщо при пере- Теорема: Якщо дві паралельні пря-
нии 2 прямих січною сума мі пересічені січної, то навхрест
односторонніх кутів дорівнює лежачі кути дорівнюють.
180є, то прямі паралельні.
Теорема: Якщо дві прямі пересічені
Теорема: Якщо дві парал-січної, то сума односторонніх кутів
лельно прямі пересічені дорівнює 180є.
січної, то відповідно-
ниє кути рівні.
Глава IV.
Співвідношення між сторонами
і кутами трикутника.
Теорема: Сума кутів Зовнішній кут трикут-ка = Сумі двох кутів тре-
трикут-ка = 180є. уг-ка, не суміжних з ним.
В будь-якому трикутнику або Теорема: У трикут-ке проти більшою сто-
всі кути гострі, або два рони лежить більший кут, проти більшого
два кута гострі, а третій кута лежить велика сторона.
тупий або прямий.
В прямокутному трикут-ке гіпотенуза Якщо два кути трикут-ка рівні, то більше катета. трикут-до - Рівнобедрений.
Теорема: Кожна сторона Для будь-яких 3 точок А, В, С, не лежать на
трикутника менше суми однієї прямий, справедливі нерівності:
2 інших сторін. АВ < AB + BC , Нд <ВА + АС, АС <АВ + НД
Сума двох гострих кутів пря-Катет прямокутного трикут-ка, лежачий
моугольного трикут-ка = 90є . проти кута в 30є , дорівнює Р… гіпотенузи.
Якщо катет прямокутного трикут-Якщо катети 1го прямокутного трикут-
ка = Р… гіпотенузи, то кут, лежачи- ка відповідно = Катетам іншого
щий проти цього катета, = 30є . , То такі трикут-ки дорівнюють.
Якщо катет і прилеглий до нього Теорема: Якщо гіпотенуза ...